Spectroscopy and shell model study of Medium-
High Spin States in 91,92Zr

N.J. Thompson1,2, A.B. Garnsworthy2,3, P.H. Regan1, V. Werner2
H.C.Ai2, L. Amon2, R.B. Cakirli2, R.F. Casten2, C. Fitzpatrick1,2, S.J.
Freeman4, G. Gurdal5, A. Heinz2, G.A. Jones1, E.A. McCutchan2, J.Qian2
S.J. Williams1, R. Winkler2

1Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK
2WNSL Yale University, 272 Whitney Avenue, New Haven CT 06520, USA
3Dept. of Physics, Istanbul University, Istanbul, Turkey
4School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
5Clark University Worcester, MA. 01610, USA

Abstract. Identification of near-yrast states in the stable 91,92Zr isotopes has been carried out
using the fusion evaporation reaction 82Se(13C,xn)$^{95-96}$Zr at an incident beam energy of 50 MeV
using the Yale ESTU tandem accelerator[1] together with the SASSYER array[2]. Gamma-ray
spectroscopy of states above the reported $\tau = 6 \mu$s, $I^\pi=11/2^+$ isomer in 91Zr [3,4] are reported
for the first time along with proposed configurations resulting from evaluation of the new
experimental data and new shell model calculations. The calculations were carried out in the π
($1f_{5/2}$), $\pi(2p_{1/2})$, $\pi(1g_{9/2})$, $\nu(2d_{5/2})$, $\nu(1g_{7/2})$, $\nu(1h_{11/2})$, model space with a newly derived
Hamiltonian [5] using the code Oxbash [6].

REFERENCES