Identification of Isomeric States 'South' of 208Pb via Projectile Fragmentation

S.J. Steer1, Zs. Podolyák1, S. Pietri1, P.H. Regan1, D. Rudolph2, E. Werner-Malento3,4, A.B. Garnsworthy1,5, R. Hoischen2, M. Górska3, J. Gerl3, H.J. Wollersheim3, F. Becker3, P. Bednarczyk3,6, L. Caceres3,7, P. Doornenbal3, H. Geissel3, J. Grębosz3,6, A. Kelic3, I. Kojouharov3, N. Kurz3, F. Montes3, W. Prokopowicz3,6, T. Saito3, H. Schaffner3, S. Tachenov3, A. Heinz5, M. Pfützner4, T. Kurtukian-Nieto8, G. Benzoni9, M. Hellström2, A. Jungclaus7, L.-L Andersson2, L. Atanalova10, D.L. Balabanski11, M.A. Bentley12, B. Blank13, A. Blazhev14, C. Brandau1,3, J.R. Brown12, A.M. Bruce15, F. Camera9, W.N. Catford1, I.J. Cullen1, Zs. Dombradi16, E. Estevez8, F. Fahlander2, W. Gelletly1, G. Ilie14, E.K. Johansson2, J. Jolie14, G.A. Jones1, M. Kmiecik6, F.G. Kondev17, S. Lalkovski10, Z. Liu4, A. Maj6, S. Myalski6, T. Shizuma1,18, A.J. Simons1, S. Schwertel19, P.M. Walker1, O. Wieland9

1Department of Physics, University of Surrey, Guildford, GU2 7XH, UK
2Department of Physics, Lund University, S-22100 Lund, Sweden
3GSI, Planckstrasse 1, D-64291, Darmstadt, Germany
4IEP, Warsaw University, Hoża 69, PL-00-681
5WNSL, Yale University, New Haven, CT, USA
6The Henryk Niewodniczański Institute of Nuclear Physics, PL-31-342, Kraków, Poland
7Departamento de Física Teórica, Universidad Autonoma de Madrid, E-28049, Madrid, Spain
8Universidad de Santiago de Compostela, E-15706, Santiago de Compostela, Spain
9INFN, and Università degli Studi di Milano, I-20133, Milano, Italy
10Faculty of Physics, University of Sofia, Sofia, Bulgaria
11Dipartimento di Fisica, Università di Camerino, I-62032, Italy
12Department of Physics, University of York, Heslington, York, YO10 5DD, UK
13CENBG, le Haut Vigneau, F-33175, Gradignan Cedex, France
14IKP, Universität zu Köln, D-50937, Köln, Germany
15School of Engineering, University of Brighton, Brighton, BN2 4GJ, UK
16Institute of Nuclear Research, H-4001 Debrecen, Pf.51, Hungary
17Nuclear Engineering Division, Argonne National Laboratory, Argonne IL-60439, USA
18Japan Atomic Energy Agency, Kyoto, 619-0215, Japan
19Physik Department E12, Technische Universität München, Garching, Germany

We present the results of an investigation of decays from isomeric states in exotic, neutron-rich nuclei near the doubly-magic nucleus 208Pb. This study forms part of the Rare Isotope Investigations at GSI (RISING) collaboration with a particular emphasis on isomeric decays in heavy, exotic nuclei. Previously, experimental information was available on the internal structure of $^N=126$ isotones for proton numbers less than 82 (i.e. proton holes in the magic closed shell) only down to $Z=80$; excited states have been reported in 207Tl and 206Hg [1]. The nuclei of interest were synthesised in the projectile fragmentation of a 1 GeV/u 208Pb beam on a thick Be target (2.5 g/cm2). The fragments of interest produced in these reactions were separated and identified in-flight with the GSI FRagment Separator (FRS). The selected reaction products were implanted in a plastic stopper placed at the final focal plane of the FRS and viewed by the 105 germanium crystals of the high-efficiency, high granularity RISING γ-ray spectrometer. Previously unidentified isomeric decays in a number of nuclei in this region will be reported, including excited states in the $N=126$, four-proton-hole nucleus, 204Pt. The results will be compared with the results of measurements on the previously observed two-proton-hole nucleus 206Hg [1] and presented together with assignments for structure based on simple shell-model assumptions and systematics of the region.