T=1 and T=0 states in the N=Z=43 nucleus, 86Tc

A. B. Garnsworthy1,2, P. H. Regan1, S. Pietri1, D. Rudolph3, Zs. Podolyák1, S. J. Steer1, F. Becker5, P. Bednarczyk4, J. Geri4, M. Görská4, H. Grawe4, I. Kojouharov4, H. Schaffner4, H. J. Wollersheim4, J. Grębosz5,4, G. Benzi6, B. Blank7, C. Brandau1, A. M. Bruce8, L. Caceres11, F. Camera6, W. N. Catford1, I. J. Cullen1, Zs. Dombrády10, P. Doornenbal4, E. Estevez11, H. Geissel4, W. Gelletly1, A. Heinz2, R. Hoischen3, G. Ilie12, J. Jolie12, G. A. Jones1, A. Jungclaus9, A. Kelic4, M. Kmiecik5, F. G. Kondev13, T. Kurtukian-Nieto11, N. Kurz4, S. Lalkowski14, Z. Liu1, A. Maj5, S. Myalski5, F. Montes4, M. Pfützner14, T. Saito4, T. Shizuma1,16, A. J. Simons4, S. Schwertel17, S. Tachenov4, P. M. Walker1, E. Werner-Malento4,15, O. Wieland6

1Department of Physics, University of Surrey, Guildford, GU2 7XH, UK
2WNSL, Yale University, 272 Whitney Avenue, New Haven, CT, 06520, USA
3Department of Physics, Lund University, S-22100, Lund, Sweden
4GSI, Planckstrasse 1, D-64291, Darmstadt, Germany
5The Henryk Niewodniczański Institute of Nuclear Physics, PL-31-342, Kraków, Poland
6Università degli Studi di Milano and INFN sezione di Milano, I-20133, Milano, Cernusco, Italy
7CENBG, le Haut Vigneau, F-33175, Gradignan Cedex, France
8School of Engineering, University of Brighton, Brighton, BN2 4GJ, UK
9Departamento de Teorica, Universidad Autonoma de Madrid, E-28049, Madrid, Spain
10Institute for Nuclear Research, H-4001, Debrecen, Hungary
11Universidad de Santiago de Compostela, E-15786, Santiago de Compostela, Spain
12IKP, Universität zu Köln, D-50937, Köln, Germany
13Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL-60439, USA
14Faculty of Physics, University of Sofia “St. Kliment Ohridski” Sofia, Bulgaria
15IEP, Warsaw University, Hoża 69, PL-00-681, Poland
16Japan Atomic Energy Research Institute, Kyoto, 619-0215, Japan
and
17Physik Department E12, Technische Universität München, Garching, Germany

The low-lying structure of 86Tc has been studied using isomer-decay spectroscopy at GSI in the first experiment of the Stopped-Beam phase within the Rare Isotope INvestigation at GSI (RISING) campaign. Following projectile fragmentation of a 750 MeV/u beam of 107Ag, reaction products were separated and unambiguously identified using the FRagment Separator (FRS) in combination with its ancillary detectors. The ions were made to stop in a plastic stopper at the final focus of the FRS in the centre of the Stopped RISING γ-ray spectrometer. This high-efficiency, high-granularity array consists of 15 germanium cluster detectors in a compact configuration which provides a full photopeak efficiency in excess of 15% at 1.3 MeV. Internal decay of the previously identified [1] microsecond isomer in 86Tc was confirmed with the addition of two previously unobserved γ-rays which help to determine the excitation energy and spin of the isomeric state. As in other heavy odd-odd N=Z nuclei a notably lower density of states below 1 MeV excitation energy compared with neighbouring odd-odd nuclei away from the N=Z line [2] is observed with the lowest T=0 state identified in the preliminary analysis being a Jπ=3$^+$ state located 1176 keV above the T=1 [3] groundstate. Results from this experiment will be discussed along with assignments of structure made from shell model calculations and systematics of N=Z nuclei.

* This work was partially supported by the EPSRC (UK) and the U. S. Department of Energy under grants DE-FG02-91ER-40609 and W-31-109-ENG-38. ABG would also like to acknowledge financial support from Nexia Solutions Limited, a subsidiary of BNFL.