The new isotopes in Po-Rn region and breaking of the Geiger-Nuttall rule

S. Antalic1, A.N. Andreyev2,7, D. Ackermann3, S. Franchoo4, S. Heinz3, F.P. Hessberger3, S. Hofmann3,8, M. Huyse5, S.R. Lesher5, R. Mann3, K. Nishio9, R.D. Page6, J. Ressler7, S. Saro1, B. Streicher1, B. Sulignano3, P. Van Duppen5, D. Wiseman6, R. Wyss10

1 Department of Nuclear Physics and Biophysics, Comenius University, Bratislava SK-84248, Slovakia
2 TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
3 Gesellschaft für Schwerionenforschung, Plankstrasse 1, D-64291 Darmstadt, Germany
4 IPN Orsay, F-91406 Orsay Cedex, France
5 Instituut voor Kern- en Stralingfysica, K.U. Leuven, University of Leuven, B-3001 Leuven, Belgium
6 Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
7 Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
8 Physikalisches Institut, J.W. Goethe-Universität, D-60054 Frankfurt, Germany
9 Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
10 Department of Physics, Royal Institute of Technology, 10405 Stockholm, Sweden

Alpha decay is one of the powerful tools for nuclear structure research. One of its well known characteristics is Geiger-Nuttall rule which linearly relates the logarithm of the decay half-life with the square root of the α decay energy.

This contribution reviews the results of the recent experiments at the velocity filter SHIP (GSI, Darmstadt) obtained in the region of neutron deficient isotopes from lead to radon. The synthesis of new very neutron-deficient isotopes 186,187Po, 192At and 193,194Rn and their decay properties will be presented.

Based on this new data we demonstrate the first case when the linear dependence of the Geiger-Nuttall rule is strongly broken in Po isotopes by approaching the neutron mid-shell at N=104. The break of the Geiger-Nuttall law is even much stronger than the well-known and until now the only deviation across the N=126 neutron shell. For example for 186Po the obtained half-life is almost three orders of magnitude longer as compared to the interpolation between 186Po and 210Po.

In this contribution we will link the observed behaviour to the deformation change between the parent Po and daughter Pb nuclei close and beyond the neutron mid-shell at N=104.