High-Spin Spectroscopy of 124,125,126Xe

1Helmholtz-Institut für Strahlen-und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn, Germany; 2Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark; 3Dipartimento di Fisica, Università degli Studi di Milano and INFN, Sezione di Milano, via Celoria 16, 20133 Milano, Italy; 4Lawrence Berkeley Laboratory, Berkeley CA 94720, USA; 5Argonne National Laboratory, Argonne, USA; 6Yale University, New Haven, CT 06520, USA;

High-spin states in the 124,125,126Xe have been populated in the 82Se(48Ca,xn)$^{130-x}$Xe reaction at a beam energy of 206 MeV. The beam was provided by the ATLAS accelerator at Argonne National Laboratory and γ-ray coincidences were measured with the GAMMASPHERE spectrometer array. The main goal of the experiment was to search for hyperdeformation in Xe nuclei [1], but the data also contain rich spectroscopic information on normal-deformed states. More than 10 long bands extending into the spin region of $\sim 60 \hbar$ were identified in 125Xe and 126Xe. In 125Xe, previously known rotational bands at low spins [2] are confirmed. Several of the high-spin bands are connected to the normal-deformed structures but several are still floating. Earlier known structures in 124Xe [3,4] are confirmed and a new side band was found. Irregular structures on top of the yrast band are identified as a fingerprint of band termination. Possible configuration assignments of the different structures will be discussed.

References:

1. C. R. Hansen et al., AIP Conf. Proc. 764, 64 (2005);
2. I. Wiedenhöver et al., Nucl. Phys. A582, 77 (1995);
3. I. Schneider et al., Phys. Rev. C 60, 014312 (1999);
4. V. Werner et al., Nucl. Phys. A692, 451 (2001);